Optimization Formulation#

Design variables#

Two parameters controlling the size and location of the box spar will be treated as design variables in this example.

Table 12 Design variables#

Name in input files

Design range

Variable type

Description

wl_a2

[-0.2, -0.1]

Continuous

Non-dimensional horizontal location of the leading web from the leading edge

wt_a2

[-0.5, -0.3]

Continuous

Non-dimensional horizontal location of the leading web from the leading edge

Fixed parameters#

All other cross-sectional parameters are fixed and summarized in Table 13

Table 13 Fixed parameters#

Name in input files

Value

Type

Description

chord

20.76

Real

Chord length of the cross-section

pfte2_a2

-0.9

Real

Non-dimensional location of point marking the coarse meshes in the filling region

mesh_size

0.04

Real

Global mesh size

mesh_size_fill

0.3

Real

Mesh size for the filling regions

oa2

-0.25

Real

Non-dimensional horizontal location of the model center (quarter chord)

pnsmc_a2

-0.046

Real

Non-dimensional horizontal coordinate of the center of the non-structural mass

pnsmc_a3

0.0

Real

Non-dimensional vertical coordinate of the center of the non-structural mass

nsmr

0.0094

Real

Non-dimensional radius of the non-structural mass

mi_spar_1

4

Integer

Material (lamina) selection of the box spar layup

fo_spar_1

50

Integer

Fiber angle of layer 1 of the box spar layup

fo_spar_2

-9

Integer

Fiber angle of layer 2 of the box spar layup

fo_spar_3

53

Integer

Fiber angle of layer 3 of the box spar layup

fo_spar_4

-44

Integer

Fiber angle of layer 4 of the box spar layup

np_spar_1

16

Integer

Number of plies of layer 1 of the box spar layup

np_spar_2

16

Integer

Number of plies of layer 2 of the box spar layup

np_spar_3

14

Integer

Number of plies of layer 3 of the box spar layup

np_spar_4

19

Integer

Number of plies of layer 4 of the box spar layup

mi_le

1

Integer

Material (lamina) selection of the cap layup

fo_le

-36

Integer

Fiber angle of the cap layup

np_le

16

Integer

Number of plies of the cap layup

mi_te

4

Integer

Material (lamina) selection of the overwrap layup

fo_te

71

Integer

Fiber angle of the overwrap layup

np_te

13

Integer

Number of plies of the overwrap layup

Objective#

To minimize the difference between the calculated beam properties and target ones. The min-max method is used in this example. The difference is measured as the maximum one among the differences (absolute values) of all beam properties considered.

\[f = \max \{ |d_i|,\quad i = 1 \text{ to } 5 \},\]

where

\[\begin{split}\begin{aligned} d_1 &= \frac{GJ - \hat{GJ}}{\hat{GJ}} \\ d_2 &= \frac{EI_f - \hat{EI}_f}{\hat{EI}_f} \\ d_3 &= \frac{EI_l - \hat{EI}_l}{\hat{EI}_l} \\ d_4 &= \frac{SC_2^{le} - \hat{SC}_2^{le}}{\hat{SC}_2^{le}} \\ d_5 &= \frac{MC_2^{le} - \hat{MC}_2^{le}}{\hat{MC}_2^{le}} \end{aligned}\end{split}\]

Method#

Genetic algorithm will be used in this example.

The population size is set to 50.

The stopping conditions are two-fold:

  1. Convergence: Check if the change of average fitness among the last 10 generations is less than 10%

  2. Maximum functional evaluations: 2000