Channel#
Problem description#

Figure 56 Cross section of the pipe [CHEN2010].#
This example has a cross section of a highly heterogeneous channel.
This cross section geometry can be defined as shown in Fig. 56 [CHEN2010].
The isotropic material properties are given in Table 50.
The layup is defined having a single layer with the thickness 0.001524 m.
The result is shown in Table 52 and compared with those in [CHEN2010].
Complete input files can be found in examples\ex_channel\
, including channel.xml
and materials.xml
.

Figure 57 Base points, Base lines and Segments of the channel cross section.#

Figure 58 Meshed cross section viewed in Gmsh.#
Name |
Type |
Density |
\(E\) |
\(\nu\) |
---|---|---|---|---|
\(\mathrm{kg/m^3}\) |
\(\mathrm{GPa}\) |
|||
mtr1 |
isotropic |
1068.69 |
206.843 |
0.49 |
Name |
Layer |
Material |
Ply thickness |
Orientation |
Number of plies |
---|---|---|---|---|---|
\(\mathrm{m}\) |
\(\circ\) |
||||
layup1 |
1 |
mtr1 |
0.001524 |
0 |
1 |
Result#
\(\phantom{-}1.906\times 10^7\) |
\(0.0\) |
\(\phantom{-}0.0\) |
\(\phantom{-}0.0\) |
\(-4.779\times 10^4\) |
\(-1.325\times 10^5\) |
\(\phantom{-}0.0\) |
\(2.804\times 10^6\) |
\(\phantom{-}2.417\times 10^5\) |
\(\phantom{-}2.128\times 10^4\) |
\(\phantom{-}0.0\) |
\(\phantom{-}0.0\) |
\(\phantom{-}0.0\) |
\(2.417\times 10^5\) |
\(\phantom{-}2.146\times 10^6\) |
\(-7.663\times 10^3\) |
\(\phantom{-}0.0\) |
\(\phantom{-}0.0\) |
\(\phantom{-}0.0\) |
\(2.128\times 10^4\) |
\(-7.663\times 10^3\) |
\(\phantom{-}2.091\times 10^2\) |
\(\phantom{-}0.0\) |
\(\phantom{-}0.0\) |
\(-4.779\times 10^4\) |
\(0.0\) |
\(\phantom{-}0.0\) |
\(\phantom{-}0.0\) |
\(\phantom{-}2.011\times 10^3\) |
\(\phantom{-}9.104\times 10^2\) |
\(-1.325\times 10^5\) |
\(0.0\) |
\(\phantom{-}0.0\) |
\(\phantom{-}0.0\) |
\(\phantom{-}9.104\times 10^2\) |
\(\phantom{-}1.946\times 10^3\) |
\(\phantom{-}1.903\times 10^7\) |
\(0.0\) |
\(\phantom{-}0.0\) |
\(\phantom{-}0.0\) |
\(-4.778\times 10^4\) |
\(-1.325\times 10^5\) |
\(\phantom{-}0.0\) |
\(2.791\times 10^6\) |
\(\phantom{-}2.364\times 10^5\) |
\(\phantom{-}2.122\times 10^4\) |
\(\phantom{-}0.0\) |
\(\phantom{-}0.0\) |
\(\phantom{-}0.0\) |
\(2.364\times 10^5\) |
\(\phantom{-}2.137\times 10^6\) |
\(-7.679\times 10^3\) |
\(\phantom{-}0.0\) |
\(\phantom{-}0.0\) |
\(\phantom{-}0.0\) |
\(2.122\times 10^4\) |
\(-7.679\times 10^3\) |
\(\phantom{-}2.086\times 10^2\) |
\(\phantom{-}0.0\) |
\(\phantom{-}0.0\) |
\(-4.778\times 10^4\) |
\(0.0\) |
\(\phantom{-}0.0\) |
\(\phantom{-}0.0\) |
\(\phantom{-}2.010\times 10^3\) |
\(\phantom{-}9.102\times 10^2\) |
\(-1.325\times 10^5\) |
\(0.0\) |
\(\phantom{-}0.0\) |
\(\phantom{-}0.0\) |
\(\phantom{-}9.102\times 10^2\) |
\(\phantom{-}1.944\times 10^3\) |