Channel#
Problem description#
 
Figure 56 Cross section of the pipe [CHEN2010].#
This example has a cross section of a highly heterogeneous channel.
This cross section geometry can be defined as shown in Fig. 56 [CHEN2010].
The isotropic material properties are given in Table 50.
The layup is defined having a single layer with the thickness 0.001524 m.
The result is shown in Table 52 and compared with those in [CHEN2010].
Complete input files can be found in examples\ex_channel\, including channel.xml and materials.xml.
 
Figure 57 Base points, Base lines and Segments of the channel cross section.#
 
Figure 58 Meshed cross section viewed in Gmsh.#
| Name | Type | Density | \(E\) | \(\nu\) | 
|---|---|---|---|---|
| \(\mathrm{kg/m^3}\) | \(\mathrm{GPa}\) | |||
| mtr1 | isotropic | 1068.69 | 206.843 | 0.49 | 
| Name | Layer | Material | Ply thickness | Orientation | Number of plies | 
|---|---|---|---|---|---|
| \(\mathrm{m}\) | \(\circ\) | ||||
| layup1 | 1 | mtr1 | 0.001524 | 0 | 1 | 
Result#
| \(\phantom{-}1.906\times 10^7\) | \(0.0\) | \(\phantom{-}0.0\) | \(\phantom{-}0.0\) | \(-4.779\times 10^4\) | \(-1.325\times 10^5\) | 
| \(\phantom{-}0.0\) | \(2.804\times 10^6\) | \(\phantom{-}2.417\times 10^5\) | \(\phantom{-}2.128\times 10^4\) | \(\phantom{-}0.0\) | \(\phantom{-}0.0\) | 
| \(\phantom{-}0.0\) | \(2.417\times 10^5\) | \(\phantom{-}2.146\times 10^6\) | \(-7.663\times 10^3\) | \(\phantom{-}0.0\) | \(\phantom{-}0.0\) | 
| \(\phantom{-}0.0\) | \(2.128\times 10^4\) | \(-7.663\times 10^3\) | \(\phantom{-}2.091\times 10^2\) | \(\phantom{-}0.0\) | \(\phantom{-}0.0\) | 
| \(-4.779\times 10^4\) | \(0.0\) | \(\phantom{-}0.0\) | \(\phantom{-}0.0\) | \(\phantom{-}2.011\times 10^3\) | \(\phantom{-}9.104\times 10^2\) | 
| \(-1.325\times 10^5\) | \(0.0\) | \(\phantom{-}0.0\) | \(\phantom{-}0.0\) | \(\phantom{-}9.104\times 10^2\) | \(\phantom{-}1.946\times 10^3\) | 
| \(\phantom{-}1.903\times 10^7\) | \(0.0\) | \(\phantom{-}0.0\) | \(\phantom{-}0.0\) | \(-4.778\times 10^4\) | \(-1.325\times 10^5\) | 
| \(\phantom{-}0.0\) | \(2.791\times 10^6\) | \(\phantom{-}2.364\times 10^5\) | \(\phantom{-}2.122\times 10^4\) | \(\phantom{-}0.0\) | \(\phantom{-}0.0\) | 
| \(\phantom{-}0.0\) | \(2.364\times 10^5\) | \(\phantom{-}2.137\times 10^6\) | \(-7.679\times 10^3\) | \(\phantom{-}0.0\) | \(\phantom{-}0.0\) | 
| \(\phantom{-}0.0\) | \(2.122\times 10^4\) | \(-7.679\times 10^3\) | \(\phantom{-}2.086\times 10^2\) | \(\phantom{-}0.0\) | \(\phantom{-}0.0\) | 
| \(-4.778\times 10^4\) | \(0.0\) | \(\phantom{-}0.0\) | \(\phantom{-}0.0\) | \(\phantom{-}2.010\times 10^3\) | \(\phantom{-}9.102\times 10^2\) | 
| \(-1.325\times 10^5\) | \(0.0\) | \(\phantom{-}0.0\) | \(\phantom{-}0.0\) | \(\phantom{-}9.102\times 10^2\) | \(\phantom{-}1.944\times 10^3\) |