Channel#

Problem description#

../../../_images/ex_channel_0.png

Figure 56 Cross section of the pipe [CHEN2010].#

This example has a cross section of a highly heterogeneous channel. This cross section geometry can be defined as shown in Fig. 56 [CHEN2010]. The isotropic material properties are given in Table 50. The layup is defined having a single layer with the thickness 0.001524 m. The result is shown in Table 52 and compared with those in [CHEN2010]. Complete input files can be found in examples\ex_channel\, including channel.xml and materials.xml.

../../../_images/ex_channel_1.png

Figure 57 Base points, Base lines and Segments of the channel cross section.#

../../../_images/ex_channel_mesh.png

Figure 58 Meshed cross section viewed in Gmsh.#

Table 50 Material properties#

Name

Type

Density

\(E\)

\(\nu\)

\(\mathrm{kg/m^3}\)

\(\mathrm{GPa}\)

mtr1

isotropic

1068.69

206.843

0.49

Table 51 Layups#

Name

Layer

Material

Ply thickness

Orientation

Number of plies

\(\mathrm{m}\)

\(\circ\)

layup1

1

mtr1

0.001524

0

1

Result#

Table 52 Results#

\(\phantom{-}1.906\times 10^7\)

\(0.0\)

\(\phantom{-}0.0\)

\(\phantom{-}0.0\)

\(-4.779\times 10^4\)

\(-1.325\times 10^5\)

\(\phantom{-}0.0\)

\(2.804\times 10^6\)

\(\phantom{-}2.417\times 10^5\)

\(\phantom{-}2.128\times 10^4\)

\(\phantom{-}0.0\)

\(\phantom{-}0.0\)

\(\phantom{-}0.0\)

\(2.417\times 10^5\)

\(\phantom{-}2.146\times 10^6\)

\(-7.663\times 10^3\)

\(\phantom{-}0.0\)

\(\phantom{-}0.0\)

\(\phantom{-}0.0\)

\(2.128\times 10^4\)

\(-7.663\times 10^3\)

\(\phantom{-}2.091\times 10^2\)

\(\phantom{-}0.0\)

\(\phantom{-}0.0\)

\(-4.779\times 10^4\)

\(0.0\)

\(\phantom{-}0.0\)

\(\phantom{-}0.0\)

\(\phantom{-}2.011\times 10^3\)

\(\phantom{-}9.104\times 10^2\)

\(-1.325\times 10^5\)

\(0.0\)

\(\phantom{-}0.0\)

\(\phantom{-}0.0\)

\(\phantom{-}9.104\times 10^2\)

\(\phantom{-}1.946\times 10^3\)

Table 53 Results from reference [CHEN2010]#

\(\phantom{-}1.903\times 10^7\)

\(0.0\)

\(\phantom{-}0.0\)

\(\phantom{-}0.0\)

\(-4.778\times 10^4\)

\(-1.325\times 10^5\)

\(\phantom{-}0.0\)

\(2.791\times 10^6\)

\(\phantom{-}2.364\times 10^5\)

\(\phantom{-}2.122\times 10^4\)

\(\phantom{-}0.0\)

\(\phantom{-}0.0\)

\(\phantom{-}0.0\)

\(2.364\times 10^5\)

\(\phantom{-}2.137\times 10^6\)

\(-7.679\times 10^3\)

\(\phantom{-}0.0\)

\(\phantom{-}0.0\)

\(\phantom{-}0.0\)

\(2.122\times 10^4\)

\(-7.679\times 10^3\)

\(\phantom{-}2.086\times 10^2\)

\(\phantom{-}0.0\)

\(\phantom{-}0.0\)

\(-4.778\times 10^4\)

\(0.0\)

\(\phantom{-}0.0\)

\(\phantom{-}0.0\)

\(\phantom{-}2.010\times 10^3\)

\(\phantom{-}9.102\times 10^2\)

\(-1.325\times 10^5\)

\(0.0\)

\(\phantom{-}0.0\)

\(\phantom{-}0.0\)

\(\phantom{-}9.102\times 10^2\)

\(\phantom{-}1.944\times 10^3\)