# Circular tube#

## Problem description#

This example has a cross section of a simple circular shape with radius $$r=10$$ m. This cross section geometry can be defined easily by a center and a radius. Material properties are given in Table 30. The layup is defined using the stacking sequence code $$[\pm 45_2/0_2/90]_{2s}$$. The result is given in Table 32. Complete input files can be found in examples\ex_tube\, including tube.xml and materials.xml.

Table 30 Material properties#

Name

Type

Density

$$E_{1}$$

$$E_{2}$$

$$E_{3}$$

$$G_{12}$$

$$G_{13}$$

$$G_{23}$$

$$\nu_{12}$$

$$\nu_{13}$$

$$\nu_{23}$$

$$10^3\ \mathrm{kg/m^3}$$

$$\mathrm{GPa}$$

$$\mathrm{GPa}$$

$$\mathrm{GPa}$$

$$\mathrm{GPa}$$

$$\mathrm{GPa}$$

$$\mathrm{GPa}$$

iso5_4

orthotropic

1.664

10.3

10.3

10.3

8.0

8.0

8.0

0.3

0.3

0.3

Table 31 Layups#

Name

Material

Stacking sequence

layup1

iso5_4

$$[\pm 45_2/0_2/90]_{s}$$

## Result#

 $$\phantom{-}1.108\times 10^{12}$$ $$-2.677\times 10^{-3}$$ $$-1.050\times 10^{-4}$$ $$-5.795\times 10^{-5}$$ $$-2.099\times 10^5$$ $$-1.626\times 10^5$$ $$-2.677\times 10^{-3}$$ $$\phantom{-}2.352\times 10^{11}$$ $$-1.583\times 10^3$$ $$\phantom{-}4.781\times 10^4$$ $$\phantom{-}3.200\times 10^{-3}$$ $$\phantom{-}2.063\times 10^{-2}$$ $$-1.050\times 10^{-4}$$ $$-1.583\times 10^3$$ $$\phantom{-}2.352\times 10^{11}$$ $$\phantom{-}4.086\times 10^4$$ $$\phantom{-}6.546\times 10^{-4}$$ $$\phantom{-}1.063\times 10^{-3}$$ $$-5.795\times 10^{-5}$$ $$\phantom{-}4.781\times 10^4$$ $$\phantom{-}4.086\times 10^4$$ $$\phantom{-}4.043\times 10^{13}$$ $$\phantom{-}2.717\times 10^{-7}$$ $$\phantom{-}3.229\times 10^{-8}$$ $$-2.099\times 10^5$$ $$\phantom{-}3.200\times 10^{-3}$$ $$\phantom{-}6.546\times 10^{-4}$$ $$\phantom{-}2.717\times 10^{-7}$$ $$\phantom{-}4.819\times 10^{13}$$ $$-1.399\times 10^6$$ $$-1.626\times 10^5$$ $$\phantom{-}2.063\times 10^{-2}$$ $$\phantom{-}1.063\times 10^{-3}$$ $$\phantom{-}3.229\times 10^{-8}$$ $$-1.399\times 10^6$$ $$\phantom{-}4.819\times 10^{13}$$