Box beam#
Problem description#
This example is a thin-walled box beam whose cross section is depicted in Fig. 38 [YU2012].
The width \(a_2=0.953\) in, height \(a_3=0.530\) in, and thickness \(t=0.030\) in.
Each wall has six plies of the same composite material and the same fiber orientation of \(15^\circ\).
Material properties and layup scheme are listed in Table 14 and Table 15.
Cross-sectional properties are given in Table 16 and compared with those in Ref. [YU2012].
The tiny differences are due to different meshes.
Complete input files can be found in examples\ex_box\
, including box.xml
and materials.xml
.
Name |
Density |
\(E_{1}\) |
\(E_{2}\) |
\(E_{3}\) |
\(G_{12}\) |
\(G_{13}\) |
\(G_{23}\) |
\(\nu_{12}\) |
\(\nu_{13}\) |
\(\nu_{23}\) |
---|---|---|---|---|---|---|---|---|---|---|
\(\mathrm{lb\cdot sec^2/in^4}\) |
\(10^6\ \mathrm{psi}\) |
\(10^6\ \mathrm{psi}\) |
\(10^6\ \mathrm{psi}\) |
\(10^6\ \mathrm{psi}\) |
\(10^6\ \mathrm{psi}\) |
\(10^6\ \mathrm{psi}\) |
||||
mat_1 |
0.0001353 |
20.59 |
1.42 |
1.42 |
0.87 |
0.87 |
0.696 |
0.30 |
0.30 |
0.34 |
Name |
Layer |
Material |
Ply thickness |
Orientation |
Number of plies |
---|---|---|---|---|---|
\(\mathrm{in}\) |
\(\circ\) |
||||
layup1 |
1 |
mat_1 |
0.05 |
-15 |
6 |
Result#
Component |
Value |
Reference [YU2012] |
---|---|---|
\(S_{11}\) [\(\mathrm{lbf}\)] |
\(\phantom{-}1.437 \times 10^6\) |
\(\phantom{-}1.437 \times 10^6\) |
\(S_{22}\) [\(\mathrm{lbf}\)] |
\(\phantom{-}9.026 \times 10^4\) |
\(\phantom{-}9.027 \times 10^4\) |
\(S_{33}\) [\(\mathrm{lbf}\)] |
\(\phantom{-}3.941 \times 10^4\) |
\(\phantom{-}3.943 \times 10^4\) |
\(S_{14}\) [\(\mathrm{lbf \cdot in}\)] |
\(\phantom{-}1.074 \times 10^5\) |
\(\phantom{-}1.074 \times 10^5\) |
\(S_{25}\) [\(\mathrm{lbf \cdot in}\)] |
\(-5.201 \times 10^4\) |
\(-5.201 \times 10^4\) |
\(S_{36}\) [\(\mathrm{lbf \cdot in}\)] |
\(-5.635 \times 10^4\) |
\(-5.635 \times 10^4\) |
\(S_{44}\) [\(\mathrm{lbf \cdot in^2}\)] |
\(\phantom{-}1.679 \times 10^4\) |
\(\phantom{-}1.679 \times 10^4\) |
\(S_{55}\) [\(\mathrm{lbf \cdot in^2}\)] |
\(\phantom{-}6.621 \times 10^4\) |
\(\phantom{-}6.621 \times 10^4\) |
\(S_{66}\) [\(\mathrm{lbf \cdot in^2}\)] |
\(\phantom{-}1.725 \times 10^5\) |
\(\phantom{-}1.725 \times 10^5\) |