Read Structural Model Data (.k file)¶
To get the data (effective properties) from the output file (.k), use the sgio.readOutputModel()
function.
import sgio
model = sgio.readOutputModel(
file_name, # Name of the output file.
file_format, # Format of the output file.
model_type, # Type of the structural model.
)
file_name
includes the .k
extension.
file_format
can be ‘vabs’ for VABS output or ‘sc’/’swiftcomp’ for SwiftComp output.
model_type
should be chosen from a list of built-in keywords indicating the type of the structural model.
See Section Material and Structural Models for more details.
The function returns a structural model (Model).
Get Euler-Bernoulli Beam Properties from a VABS Output File¶
Consider the following VABS output file (sgio/examples/files/sg21eb_tri3_vabs40.sg.K
):
The 6X6 Mass Matrix
========================================================
5.8177756375E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 3.7260617944E-01 -9.5280621981E+01
0.0000000000E+00 5.8177756375E+00 0.0000000000E+00 -3.7260617944E-01 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 5.8177756375E+00 9.5280621981E+01 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 -3.7260617944E-01 9.5280621981E+01 1.7135907226E+03 0.0000000000E+00 0.0000000000E+00
3.7260617944E-01 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 1.0380909063E+00 -4.9410599903E+00
-9.5280621981E+01 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 -4.9410599903E+00 1.7125526316E+03
The Mass Center of the Cross Section
========================================================
1.6377500254E+01 6.4046158301E-02
The 6X6 Mass Matrix at the Mass Center
========================================================
5.817775637474E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
0.000000000000E+00 5.817775637474E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
0.000000000000E+00 0.000000000000E+00 5.817775637474E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 1.531084478603E+02 0.000000000000E+00 0.000000000000E+00
0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 1.014226911963E+00 1.161297808140E+00
0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 1.161297808140E+00 1.520942209484E+02
The Mass Properties with respect to Principal Inertial Axes
========================================================
Mass per unit span = 5.8177756375E+00
Mass moment of inertia i11 = 1.5310844786E+02
Principal mass moments of inertia i22 = 1.0053009590E+00
Principal mass moments of inertia i33 = 1.5210314690E+02
The principal inertial axes rotated from user coordinate system by
179.559622552555 degrees about the positive direction of x1 axis.
The mass-weighted radius of gyration = 5.1300440301E+00
The Geometric Center of the Cross Section
========================================================
1.1161263263E+01 1.1933318248E-01
The Area of the Cross Section
========================================================
Area = 1.9601033633E+01
Classical Stiffness Matrix (1-extension; 2-twist; 3,4-bending)
========================================================
3.0720493126E+08 -3.9135812366E+05 4.6917399239E+07 -4.2834130803E+09
-3.9135812366E+05 1.9429803967E+08 -6.4940288267E+04 5.6954183423E+06
4.6917399239E+07 -6.4940288267E+04 2.1613620627E+08 -6.7167229189E+08
-4.2834130803E+09 5.6954183423E+06 -6.7167229189E+08 6.3377360845E+10
Classical Compliance Matrix (1-extension; 2-twist; 3,4-bending)
========================================================
5.6510846844E-08 1.8599837341E-12 -4.1145399917E-10 3.8149731147E-09
1.8599837341E-12 5.1467459391E-09 9.9241222590E-14 -3.3575293615E-13
-4.1145399917E-10 9.9241222590E-14 4.7872765472E-09 2.2927003963E-11
3.8149731147E-09 -3.3575293615E-13 2.2927003963E-11 2.7385973248E-10
The Tension Center of the Cross Section
========================================================
1.3943176570E+01 1.5272342352E-01
The extension stiffness EA 3.0720414298E+08
The torsional stiffness GJ 1.9429752543E+08
Principal bending stiffness EI22 2.0888195275E+08
Principal bending stiffness EI33 3.6530578162E+09
The principal bending axes rotated from the user coordinate system by
0.291037904417929 degrees about the positive direction of x1 axis.
The following code shows how to read the output file and get some Euler-Bernoulli beam properties:
import sgio
model = sgio.readOutputModel(
'sg21eb_tri3_vabs40.sg.K', # Name of the output file.
'vabs', # Format of the output file.
'BM1', # Type of the structural model.
)
ea = model.get('ea')
Checkout sgio.model.EulerBernoulliBeamModel.get()
for more information on the properties that can be retrieved.