Read Structural Model Data (.k file)¶
To get the data (effective properties) from the output file (.k), use the sgio.readOutputModel()
function.
import sgio
model = sgio.readOutputModel(
file_name, # Name of the output file.
file_format, # Format of the output file.
model_type, # Type of the structural model.
)
file_name
includes the .k
extension.
file_format
can be ‘vabs’ for VABS output or ‘sc’/’swiftcomp’ for SwiftComp output.
model_type
should be chosen from a list of built-in keywords indicating the type of the structural model.
See Section Material and Structural Models for more details.
The function returns a structural model (Model).
Get Timoshenko Beam Properties from a VABS Output File¶
Consider the following VABS output file (sgio/examples/files/cs_box_t_vabs41.sg.K
):
The 6X6 Mass Matrix
========================================================
5.8177756375E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 3.7260617944E-01 -9.5280621981E+01
0.0000000000E+00 5.8177756375E+00 0.0000000000E+00 -3.7260617944E-01 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 5.8177756375E+00 9.5280621981E+01 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 -3.7260617944E-01 9.5280621981E+01 1.7135907226E+03 0.0000000000E+00 0.0000000000E+00
3.7260617944E-01 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 1.0380909063E+00 -4.9410599903E+00
-9.5280621981E+01 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 -4.9410599903E+00 1.7125526316E+03
The Mass Center of the Cross Section
========================================================
1.6377500254E+01 6.4046158301E-02
The 6X6 Mass Matrix at the Mass Center
========================================================
5.817775637474E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
0.000000000000E+00 5.817775637474E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
0.000000000000E+00 0.000000000000E+00 5.817775637474E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 1.531084478603E+02 0.000000000000E+00 0.000000000000E+00
0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 1.014226911963E+00 1.161297808140E+00
0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 1.161297808140E+00 1.520942209484E+02
The Mass Properties with respect to Principal Inertial Axes
========================================================
Mass per unit span = 5.8177756375E+00
Mass moment of inertia i11 = 1.5310844786E+02
Principal mass moments of inertia i22 = 1.0053009590E+00
Principal mass moments of inertia i33 = 1.5210314690E+02
The principal inertial axes rotated from user coordinate system by
179.559622552555 degrees about the positive direction of x1 axis.
The mass-weighted radius of gyration = 5.1300440301E+00
The Geometric Center of the Cross Section
========================================================
1.1161263263E+01 1.1933318248E-01
The Area of the Cross Section
========================================================
Area = 1.9601033633E+01
Classical Stiffness Matrix (1-extension; 2-twist; 3,4-bending)
========================================================
3.0720493126E+08 -3.9135812366E+05 4.6917399239E+07 -4.2834130803E+09
-3.9135812366E+05 1.9429803967E+08 -6.4940288267E+04 5.6954183423E+06
4.6917399239E+07 -6.4940288267E+04 2.1613620627E+08 -6.7167229189E+08
-4.2834130803E+09 5.6954183423E+06 -6.7167229189E+08 6.3377360845E+10
Classical Compliance Matrix (1-extension; 2-twist; 3,4-bending)
========================================================
5.6510846844E-08 1.8599837341E-12 -4.1145399917E-10 3.8149731147E-09
1.8599837341E-12 5.1467459391E-09 9.9241222590E-14 -3.3575293615E-13
-4.1145399917E-10 9.9241222590E-14 4.7872765472E-09 2.2927003963E-11
3.8149731147E-09 -3.3575293615E-13 2.2927003963E-11 2.7385973248E-10
The Tension Center of the Cross Section
========================================================
1.3943176570E+01 1.5272342352E-01
The extension stiffness EA 3.0720414298E+08
The torsional stiffness GJ 1.9429752543E+08
Principal bending stiffness EI22 2.0888195275E+08
Principal bending stiffness EI33 3.6530578162E+09
The principal bending axes rotated from the user coordinate system by
0.291037904417929 degrees about the positive direction of x1 axis.
The following code (sgio/examples/read_vabs_output_h.py
) shows how to read the output file and get some Timoshenko beam properties:
import sgio
model = sgio.readOutputModel(
"files/cs_box_t_vabs41.sg.K",
"vabs",
model_type="BM2"
)
ea = model.get('ea')
gj = model.get('gj')
ei22 = model.get('ei22')
ei33 = model.get('ei33')
print(f'EA = {ea}')
print(f'GJ = {gj}')
print(f'EI22 = {ei22}')
print(f'EI33 = {ei33}')
The output should be:
EA = 1653700.125
GJ = 6322.4210975
EI22 = 79466.796504
EI33 = 200742.66655
Checkout sgio.model.TimoshenkoBeamModel.get()
for more information on the properties that can be retrieved.