.. include:: /replace.txt .. _section-ivabs_example_uh60_mopt_stf: Multiple objective optimization of multiple cross-sections to match target beam properties =========================================================================================== Problem description ------------------- The goal and setup are the same as (:ref:`section-ivabs_example_uh60_sopt_stf`). The only difference is that this example carries out a multi-objective optimization. Optimization setup ------------------ Method ~~~~~~ Multi-objective genetic algorithm (MOGA) provided by Dakota is used. The method is configured in the following way: * Maximum number of functional evaluations: 20,000 * Size of population: 200 * Random seed: 1027 The rest are default values given by Dakota. Running of the example ---------------------- 1. Go to ``{IVABS_ROOT}\examples\e2_uh60_mopt_stf``. 2. Run ``python run.py uh60_blade.yml``. Result ------ .. list-table:: Performance of the optimization :align: center :header-rows: 0 * - Total number of evaluations - 20000 * - Total running time (wall clock) - 22183.4 sec (~= 6 hr 10 min) * - CPU model - Intel(R) Xeon(R) Gold 6134 CPU @ 3.20GHz * - CPU cores - 16 * - Memory - 95 GB .. figure:: /figures/ivabs_ex_uh60_mopt_stf_result_parallel_coord.png :name: fig-ivabs_ex_uh60_mopt_stf_result_parallel_coord :align: center Parallel coordinates plot of the Pareto front.