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1 Introduction

VABS ( Variational Asymptotic Beam Sectional Analysis) is a code implementing the various beam
theories 1313724 hased on the concept of simplifying the original nonlinear three-dimensional (3D)
analysis of slender structures into a two-dimensional (2D) cross-sectional analysis and a one-
dimensional (1D) nonlinear beam analysis using the powerful variational asymptotic method*”

VABS takes a finite element mesh of the cross-section including all the details of geometry and
material as inputs to perform a homogenization analysis to compute sectional properties including
inertial properties and structural properties. These properties are needed for the 1D beam analysis
to predict the global behavior of the slender structure. VABS can also perform a dehomogenization
analysis to compute the distributions of 3D displacements/strains/stresses, and failure indexes and
strength ratios over the cross-section based on the global behavior of the 1D beam analysis.

Since most of the theoretical details are presented in pertinent papers and collected in the book
by Prof. Hodges” this manual will only serve to help readers get started using VABS to solve
their own composite beam problems. This manual addresses the history of the code, its features,
functionalities, conventions, inputs, outputs, maintenance, and tech support.

2 VABS History

The research project that gave birth to VABS was initiated by Prof. Dewey Hodges when he was
first introduced to the variational asymptotic method by Prof. Berdickevsky at Georgia Tech in
1989 and has been ongoing ever since till the time of writing. The program name VABS first
appeared in [1]. The original version of VABS was based on a research code written by Prof.
Cesnik. Although the current version of VABS is a completely rewritten code, it is important
to note that the original version played an important role for the present code and facilitated
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its development. The fall semester of 1998, when Prof. Yu began his graduate study at Georgia
Tech, marked the beginning of the transition of VABS from a research code to a production design
and analysis tool for practicing engineers. The code was rewritten from scratch using the modern
Fortran language, with all unnecessary restrictions eliminated, and the computing and memory
efficiency greatly enhanced. At the same time, Prof. Cesnik was continuing his work on VABS for
piezoelectric materials at MIT and later at University of Michigan. And Profs. Hodges and Yu
continue their work on VABS for multiphysics modeling at Georgia Tech, Utah State University
and Purdue University. For this reason, there are two variants of VABS: the Georiga Tech/Utah
State/Purdue VABS, released and maintained by Profs. Yu and Hodges, and UM/VABS, released
and maintained by Prof. Cesnik. From henceforth in this manual the term VABS will refer only
to the Georgia Tech/Utah State/Purdue VABS, and what follows is only applicable to this code.
Many researchers and engineers all over the world are actively using VABS. VABS is becoming a
standard tool for design and analysis of composite slender structures such as helicopter rotor blades,
wind turbine blades, high aspect ratio wings, UAM/eVTOL/UAV blades, propellers, landing gear,
composite tubes, etc.

3 What is New in Different VABS versions
3.1 What is New in VABS 4.1
The new capabilities of VABS 4.1 are:

1. Perform dehomogenization for multiple load cases in terms of forces and moments correspond-
ing to the Euler-Bernoulli model and the Timoshenko model.

3.2 What is New in VABS 4.0
The new capabilities of VABS 4.0 are:

1. Compute pointwise distributions of failure indexes and strength ratios over the cross-section
under given load.

2. Compute the safety margin of the cross-section under a given load.

3. Output the nodal stress/strain values according to the original numbering of the finite element
nodes.

4. Output the complete set of engineering properties commonly used in conventional beam anal-
ysis including extension stiffness (E'A), torsional stiffness (G.J), principal bending stiffnesses
(Ely, El33), principal shear stiffnesses (GAgg, GAss), tension center, shear center, principal
inertia axis, principal bending axis, and principal shear axis.

5. Since VABS 4.0, we change the executable name to VABS.



3.3 What is New in VABS 3.9

The main feature of VABS 3.9 is prediction of sectional damping matrix based on the lamina
damping coefficients. VABS 3.9 can also output the cross-sectional area. Another feature is that
VABS 3.9 is now distributed as one single library.

3.4 What is New in VABS 3.8

The main feature of VABS 3.8 is a new license manager to allow more versatile license mechanisms
including node locked licenses and floating licenses. The user does not have to put the license in the
same folder as the input file as it was the case for previous versions. Instead, the user can use a node
locked license file stored in the same folder as the VABS executable or obtain a floating license from
a license server which could be the same machine the user is using or a license server on the Internet.

Since VABS 3.8, we provide free academic licenses for students and professors to use the full
version of VABS for teaching and academic research.

Since VABS 3.8, we provide both Linux and Windows versions for the VABS code.

3.5 What is New in VABS 3.7

The main feature of VABS 3.7 is to carry out the recovery up to the second order which provides
a better prediction for the 3D recovered fields in comparison to known exact solutions.

3.6 What is New in VABS 3.6

The main feature of VABS 3.6 is to use an improved method for optimizing the numbering of finite
element mesh. For large problems, it is much faster that the method used in previous versions.
The most recent version of fortran compiler is used for compiling the code resulting in much faster
recovery.

3.7 What is New in VABS 3.5

The main feature of VABS 3.5 is for oblique cross-sectional analysis, the inputs are given in the
oblique cross-sectional system while in previous versions, the inputs are given in the normal cross-
sectional coordinates. Also starting VABS 3.5, users can use long names of input file, including
spaces in the path and file names.

3.8 What is New in VABS 3.4

The main new feature is expanding /g in the modeling for initially curved/twisted beams. For
some cases such a change made significant differences for obtaining first and second correction of the
stiffness matrix due to initial curvature and twist. Such a change is verified using an initially curved
strip for which an elasticity solution is obtainable. The input file for this case is isorect Trif2.sg. A
64-bit version of VABS is also available since VABS 3.4.



3.9 What is New in VABS 3.3

The main new feature is introducing a new input format, and keeping the previous input format
as optional. In the new format, the user only needs to provide one real number for 6, as few users
take advantage of the nine real numbers for 61, which is useful for elements with highly curved
edges. In the new format, we introduce layer definition so that a layer type instead of material type
is provided for each element. Each layer is defined through a unique combination of material type
and layerup angle f3. It is more economical than assigning 03 for each element, as what we have
done in the previous format, because the number of layers usually is much less than the number of
elements. These two changes reduce approximately 3/4 of real numbers needed for VABS inputs,
saving space and time. These changes will also simplify the development of VABS preprocessors as
it is easier to compute just one number for #; for each element.

3.10 VABS III and What is New

VABS was originally designed to run as a stand alone code and its error handling, memory
allocation/de-allocation, and I/O were handled with this use in mind. However, in recent years,
more and more users began to explore the possibility of using VABS in a design environment. This
motivates the major upgrade of VABS to VABS III through restructuring the code.

Since the first release of VABS I1II, a few users have asked the difference between VABS III and
previous versions, in particular VABS 2.1.1 which was the last release and the code accompanying
Prof. Hodges’ book” Overall, VABS III is a much improved code in both accuracy and efficiency.
The main difference can be described according to the following two aspects.

e As far as functionalities concerned, VABS III

1. Uses the correct constraints so that it can reproduce the 3D elasticity theory for isotropic
prismatic beams. This change affects the warping functions, and affects all stiffness
models except the classical one. Such a correction enables VABS to reproduce the 3D
elasticity theory for isotropic prismatic beams and thus enables VABS to provide a better
modeling for prismatic or initially curved/twisted composite beams (VABS 3.0).

2. Recovers 3D stress/strain fields at each node in addition to the Gauss points. The
recovered 3D stress/strain fields are expressed in both the beam coordinate system and
the material coordinate system. VABS 2.1.1 only recovers 3D stress/strain fields at
the Gauss points expressed in the beam coordinate system. For visualization, nodal
values are convenient. To apply failure criteria of composite materials, stresses/strains
expressed in the material coordinate system are needed (VABS 3.0).

3. Handles isotropic, orthotropic, and anisotropic material differently. Previous versions
treat all materials as orthotropic only and must take a total of 9 elastic constants.
VABS III allows general anisotropic material with as many as 21 elastic constants and
isotropic materials with as few as 2 elastic constants (VABS 3.0).

4. Can model hygrothermal effects of composite beams due to temperature and moisture
changes. As a companion capability, VABS Conduction is developed to carry out a di-



mensional reduction for the 3D conduction problem. VABS Conduction can be requested
separately (VABS 3.1).

5. Updates the transformation procedure into the Timoshenko model from the asymptotic
energy. A new perturbation method is developed to capture the effects due to initial
curvatures/twist during the transformation. The prediction for Timoshenko stiffness is
generally improved, even for some prismatic beams (VABS 3.2).

6. Outputs the average of 3D stresses/strains within each element for convenience of post-
processing (VABS 3.2.2).

7. Provides an option for recovering the 3D displacement/strain/stress fields based on the
linear beam theory (VABS 3.2.4).

e As far as the quality of the code is concerned, VABS III

1. Is restructured to change the error handling and error message handling, memory alloca-
tion and de-allocation, and I/O handling to facilitate its integration with other software
environments (VABS 3.0).

2. Interprets and echoes all the input data for quicker identification of mistakes in the input
file (VABS 3.0).

3. Is much faster than VABS 2.1.1 by modifying the mesh optimization algorithm and
adopting a new approach to calculate the elemental finite element matrices (VABS 3.0).

4. Uses dynamic link libraries (DLLs) to encapsulate the analysis capability so that VABS
has true plug-n-play capability which is convenient for integration into other environ-
ment. Now VABS can be used both as a standalone application and two callable libraries.
The two callable libraries and the corresponding manual for developers can be requested
separately (VABS 3.0).

5. Has more thorough and informative error handling (VABS 3.0).

Quite a few bugs in VABS 2.1.1 have been corrected in VABS III and its later versions. One bug
is associated with the modified linear solver. Because of this bug, for some very rare cases, VABS
2.1.1 provides some annoying couplings which are not supposed to be there. VABS 3.0 has no such
anomaly. At least one bug related with the Trapeze effect inherited from the original VABS before
1998 has been corrected in VABS 3.0. A bug related with recovery is also corrected in VABS 3.2.3.

And starting from VABS 3.0, an evaluation version of VABS is free for anybody who asks.
It allows the user to evaluate the code for one month before obtaining a permanent license.

3.11 VABSII

VABS II was released in June 2004, with the major enhancement to remove the need of asking the
user to choose arbitrary point constraints and let the code determine the singularity and apply the
corresponding constraints. Other improvements of VABS II include calculation of principal inertial
axes, the mass matrix, and neutral axes, and significant reduction of the computing time for large
size problems.



4 VABS Features and Functionalities

4.1

VABS Features

Along with the features of previous versions, the most recent version of VABS has the following
features:

1.

10.

It is a highly modularized code written in the modern Fortran language. All the problem-
dependent arrays are allocated dynamically during run time, and the user can use all the
memory up to the limit of the machine. All the outstanding abilities of array handling in the
modern Fortran language have been exploited.

. It adopts highly efficient techniques to reduce the requirement of RAM and increase the

computational efficiency. Now cross-sections as complex as real composite helicopter rotor
blades with hundreds of layers can be easily handled on a laptop computer.

. It has a general element library that includes all the typical 2D elements such as 3, 4, 5,

6-noded triangular elements and 4, 5, 6, 7, 8, 9-noded quadrilateral elements. Users are free
to choose the type of elements, and different types of elements can be mixed within one mesh,
if necessary.

. It can deal with arbitrary layups. Users can provide one parameter for the layup orientation

and one parameter for the ply orientation to uniquely specify the material system in the
global coordinate system. Nine parameters can be used for the ply orientation if a ply is
highly curved and the ply angle is not uniform within an element.

. It detects singularities and properly removes them to render the solution as a true represen-

tation of the theory. Older versions before VABS II dealt with them approximately by asking
the users to input four constraints on three distinct, user-specified nodes. The arbitrariness of
the older approach can affect the refined models, and sometimes may even render the linear
system unsolvable.

. It applies the four constraints on the warping functions in such a way that the 3D elastic-

ity solution can be reproduced for isotropic beams, correcting a mistake related with these
constraints in previous versions.

It does not require the beam reference line to be the locus of cross-sectional area centroids.
VABS can calculate the centroid for any arbitrary cross-section, and users can choose their
own reference line for the convenience of the 1D global beam analysis.

. It can deal with isotropic materials, orthotropic materials, and general anisotropic materials,

while all the old versions treat all materials as orthotropic.

. It can be quickly and conveniently integrated with other environments such as computer-

aided design environments, multidisciplinary optimization environments, or commercial finite
element packages.

VABS can be executable as a stand alone executable in command line or called by other codes
as a library.



4.2

VABS Functionalities

VABS is a general-purpose, cross-sectional analysis tool for computing inertial, stiffness, and
strength properties of general cross-sections. Specifically, it has the following functionalities:

1.

10.

Compute the 6 x6 mass matrix, written in terms of the mass per unit length, and the first and
second mass moments of inertia about the three axes. Based on the information provided by
the mass matrix, VABS calculates the mass center, the principal inertial axes, the principal
mass moments of inertia, and the mass-weighted radius of gyration.

. Compute the geometrical center of the cross-section and the area of the cross-section.

. Compute the 4x4 stiffness matrix and compliance matrix for the classical model (also called

the Euler-Bernoulli model) for prismatic or initially curved/twisted composite beams with
normal or oblique cross-sections. Based on the classical model, VABS can calculate the
location of tension center, the extension stiffness (EF'A), the torsional stiffness (GJ), the
principal bending stiffnesses (F I3 and Els3), and the principal bending axes.

Compute the 6x6 stiffness matrix and compliance matrix for the Timoshenko model for
prismatic or initially curved/twisted composite beams with normal cross-sections. Based on
the Timoshenko model, VABS can calculate the location of the shear center, the principal
shear stiffnesses (GAg2 and GAss3), and the principal shear axes.

. Compute the 5x5 stiffness matrix and compliance matrix for the Vlasov model for prismatic

or initially curved/twisted composite beams with normal cross-sections, which is important
for thin-walled beams with open sections.

. Compute the trapeze effects, a nonlinear effect important for beams under large centrifugal

forces. The composite beam could be either prismatic or initially twisted and curved.

Compute 3D pointwise displacement, strain, and stress fields using the global behavior of a 1D
global beam analysis using the classical model, the Timoshenko model, or the Vlasov model.
Multiple recovery runs can be performed for different inputs of global beam responses without
repeating the homogenization analysis. The recovered stress/strain fields are evaluated both
at the nodal positions and Gauss points. They are expressed in both the material coordinate
system and the beam coordinate system.

. Compute sectional damping matrix for composite beams. The computation is based on

the simple concept of scaling stiffness related matrices with the lamina damping coefficient
specified for each material.

. Compute hygrothermal effects of composite beams due to temperature and moisture changes.

As a companion capability, VABS Conduction is developed to carry out a dimensional reduc-
tion for the 3D conduction problem, which can be requested separately.

Compute the failure index and strength ratio distribution over the cross-section, and the
strength ration for the entire cross-section.
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Figure 1: VABS beam coordinate system

5 VABS Conventions

To understand the inputs and interpret outputs of the program correctly, we need to explain some
conventions used by VABS.

First, VABS uses a right hand system, the beam coordinate system, denoted as 1,2 and x3,
with 1 as the beam axis and xo and x3 as the local Cartesian coordinates of the cross-section,
see Figure [l| for a beam with an arbitrary cross-section. Usually, for rotor blades, z; is along the
direction of the span and points to the tip, z9 is along the direction of the trailing edge to the
leading-edge of the airfoil and points to the direction of the leading edge, and x3 points upward so
that x1, x9, x3 form a right-hand system. Often the origin of x; is located at the root of the blade,
yet the user is free to choose the origin of x5 and x3 at an arbitrary point of the cross-section, or
particular references with physical meaning such as the mass center, geometry center, tension cen-
ter, or shear center. Detailed information is needed to define the cross-sectional geometric domain
spanned by zs and x3 and the materials that occupy that domain. Also, certain characteristics
along the span direction, such as initial curvature/twist or taper, are needed for cross-sectional
analyses when they are not equal to zero. The obliqueness should be specified when the angle
between x1 and the xo-z3 plane is not equal to 90°, that is, when reference cross-section is not
normal to the reference line, such as the case of a swept wing. It is noted that the beam coordinate
system is the same as the undeformed beam coordinate system b defined in Ref. [7].

Second, VABS numbers the nodes of each element in the counterclockwise direction, as shown
in Figure [2| for triangular elements and Figure [3|for quadrilateral elements. Nodes 1, 2, and 3 of the
triangular elements and nodes 1, 2, 3, and 4 of the quadrilateral elements are at the corners. Nodes
5, 6, 7 of the triangular elements and nodes 5, 6, 7, 8, 9 for quadrilateral elements are optional nodes.

The recovered 3D displacements are values at each node expressed in the VABS beam coor-
dinate system (Figure [l). However, stresses and strains are most accurately evaluated at Gauss
integration points. Gauss integration schemes for different orders of the two types of elements are
also shown in Figures [2| and The red interior points correspond to the integration scheme for
linear elements and the green interior points correspond to the integration scheme for quadratic



Figure 2: VABS triangular element node numbering and corresponding integration schemes
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Figure 3: VABS quadrilateral element node numbering and corresponding integration schemes

elements. VABS can also recover 3D stresses and strains at each node as suggested by our industry
users. The recovered stresses and strains are expressed in both the beam coordinate system and
the material coordinate system which is needed for failure analysis of composite materials.

VABS allows the user to choose any unit system of convenience. However, it is necessary to be
consistent in the choice of units to avoid confusion. Particularly, users must never use the pound
as a unit of mass to avoid confusion. When pounds are used for force and feet for length, the unit
of mass must be slug = Ib-sec?/ft. If inches are used for length along with pounds for force, then
the unit of mass must be Ib-sec?/in.

Finally, to understand the VABS input convention for composite layups, we need to find re-
lationships among three coordinate systems: the beam coordinate system (z1,z2,x3) used by the
user to define the geometry, the material system (eq, e, e3) used by the user to define the material
properties, and an intermediate one to define the ply plane (y1,y2,y3). As shown in Figure {4} the
ply coordinate system (y1,y2,¥ys3) is formed by rotating the global coordinate system (z1, z2, z3) in
the right-hand sense about x; by the amount 0 < #; < 360°. Then, the ply coordinate system
(y1,y2,y3) is rotated about ys in the right-hand sense by the amount —90° < 03 < 90° to form
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Figure 4: VABS layup convention

the material system (eq, e, €3), the range of 05 being the same as commonly defined in the field of
composite materials. Here we use the box-beam section depicted in Figure [5| to illustrate VABS
layup conventions. Here, x1 is pointing toward the reader, x5 is pointing to the right side of the
reader, and x3 is pointing upward vertically. For the upper wall: #; = 0°; the left wall: 8; = 90°;
the lower wall: 8; = 180°; the right wall: #; = 270°. For all the walls 63 = 6 for the box-beam in
Figure [5| because all the fibers are rotating positively about y3/es3 by the angle . The users can
specify their own stacking sequences. The stacking sequences expressed from the innermost layer
to the outermost layer for each wall are often used.

6 VABS Installation and Execution

VARBS is distributed in the form of VABSx.xReleasePCMM-DD-YEAR.exe for Windows operating
systems with “x.x” denotes the version number. Double click the file VABSx.xReleasePCMM-DD-
YEAR.exe and follow the setup wizard is all you need to do for installation. More details can refer
to the Readme file. You should add the folder where you stored VABS executable into the Path.

VABS is a command line code. It can be executed using VABS inputfile analysis nload in the
regular command prompt. The command line argument analysis lets VABS know which type of
analyses to perform.

1. If analysis does not exist, VABS will carry out a homogenization analysis to compute the
inertial and stiffness properties.

2. If analysis is equal to 1, VABS will carry out a dehomogenization analysis to recover 3D
displacements, strains, stresses based on the nonlinear beam theory.

3. If analysis is equal to 2, VABS will carry out a dehomogenization analysis to recover 3D
displacements, strains, stresses based on the linear beam theory.

4. If analysis is equal to 3, VABS will carry out a dehomogenization analysis to evaluate the
distribution of failure index and strength ratio over the cross-section, and the strength ratio
of the entire cross-section.

10
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Figure 5: VABS layup convention for a box-beam

If analysis is equal to 1, 2, 3, we can also provide another command line argument nload so that
VABS knows to perform the corresponding dehomogenization analysis for how many load cases. If
this argument does not exist, it will perform the dehomogenization analysis for a single load case.

This command line execution can be achieved by Click Start, choose Run, and type in “cmd”
and click OK. Then use “cd” to enter the right folder where the input file is in, then type VABS
inputfile argu. If the input file number includes spaces, one should use VABS “inputfile” analy-
sis nload. 1If the input file is not located in the current folder, you should use VABS “absolute
path\inputfile” analysis nload to let VABS correctly locate the input file. More details for running
the code on a Windows machine can be found in the Readme file.

The Linux version of VABS is distributed in the form of VABSx.xReleaseLinuxMM-DD-YEAR.zip
with “x.x” denotes the version number. Unzip the file VABSx.xReleaseLinuxMM-DD-YEAR.zip
into a folder of your choice is all you need to do for installing VABS. The command to execute
VABS on a Linux machine is the same as that on a Windows machine. More details can be found
in the Readme file.

7 VABS Inputs

Although a few preprocessors, such as PreVABS, have been developed to create VABS input files,
it is still beneficial for advanced users, particularly those who want to embedded VABS in their
own design environment, to understand the meaning of the input data.

11



Starting from VABS 4.0, the inputs for the VABS are separated into two files: homogenization
input file and dehomogenization input file. VABS homogenization run only requires the homoge-
nization input file with a name of the user’s choice. The dehomogenization input file associated
with the homogenization input file with extension glb. In other words, if the homogenization input
file name is input_file_name, the dehomogenization input file must be input_file_name.glb.

7.1 Homogenization Input File

The first line lists two newly introduced integer flags arranged as: “format_flag nlayer”. If the first
flag is 1, the input is prepared in the new format, otherwise, it is prepared in the old format. The
second integer provides the number of layers in the section. Note, here layer is defined as a unique
combination of material type and layup orientation, it does not necessarily corresponds to the defi-
nition used in the manufacturing sense. For example, even if a section is made of a single isotropic
material, we consider it has one layer. Hence, nlayer should be always given a value greater than
one if format_flag=1. Note nlayer is not used in the old format.

The second line has two flags arranged as: “Timoshenko_flag damping_flag thermal_flag’. The
first flag, Timoshenko_flag, can be only 1 or 0. If it is 1, VABS will construct both the classical
model (also called the Euler-Bernoulli model) and the Timoshenko model. If it is 0, it will only
construct the classical model. The second flag, damping_flag, can be equal to 0 or 1. If it is equal
to 0, VABS will not compute the damping matrix for the section. If it is equal to 1, VABS will
compute the damping matrix. The third flag, thermal_flag, can be equal to 0 or 3. If it is equal to
zero, VABS will carry out a pure mechanical analysis. If it is equal to 3, VABS will carry out a
one-way coupled thermoelastic analysis.

The third line has four flags arranged as: “curve_flag oblique_flag trapeze_flag Viasov_flag.” These
flags can be only 1 or 0. Their uses are explained in the following:

1. To model initially curved and twisted beams, curve_flag is 1, and three real numbers for the
twist (k1) and curvatures (kg and k3) should be provided in the very next line.

2. To model oblique cross-sections, oblique_flag is 1, and two real numbers are needed in the
following line to specify the orientation of an oblique reference cross-section, see Figure [6] for
a sketch of such a cross-section. The first number is cosine of the angle between normal of the
oblique section (y;) and beam axis x1. The second number is cosine of the angle between y,
of the oblique section and beam axis (z1). The summation of the square of these two numbers
should not be greater than 1.0 in double precision. The inputs including coordinates, material
properties, etc. and the outputs including mass matrix, stiffness matrix, etc. are given in the
oblique system, the y; coordinate system as shown in Figure [6] Note that this feature is only
enabled for the classical beam model.

3. To obtain the trapeze effect, trapeze_flag is 1.

4. To obtain the Vlasov model, Viasov_flag is 1. Viasov_flag can be 1 only if Timoshenko_flag
is 1. VABS will first construct the Timoshenko model, which determines the location of the
shear center. If the shear center is not at the origin of the beam coordinate system, VABS

12
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Figure 6: Sketch of an oblique reference cross-section

will move the origin of beam coordinate system to the shear center and repeat the calculation
to obtain the Vlasov model.

The next line lists three integers arranged as: “nnode nelem nmate,” where nnode is the total
number of nodes, nelem the total number of elements, and nmate the total number of material types.

The next nnode lines are the coordinates for each node arranged as: “node_no xo x3,” where
node_no is an integer representing the unique number assigned to each node and x2, x3 are two real
numbers describing the location (x, x3) of the node. Although the arrangement of node_no is
not necessary to be consecutive, every node starting from 1 to nnode should be present.

The next nelem lines list 10 integers for the nodes for each element (also known as the con-
nectivity relations). They are arranged as: “elem_no node_1 node_2 node_3 node_4 node_5 node_6
node_7 node_8 node_9,” where elem_no is the number of element and node_i (i = 1,2,...,9) are
nodes of this element. If a node is not present in the element, the value is 0. If node_4 is 0, the ele-
ment is a triangular element; see Figures [2| and [3| for the VABS numbering convention. Although
the arrangement of elem_no is not necessary to be consecutive, every element starting
from 1 to nelem should be present.

If format_I =1, that is, if the new format is used, the next nelem lines list the layer type and
the layer plane angle (6;) for each element as: elem_no layer_type 01, where layer_type is an integer
representing which layer the element elem_no belongs to, and 6; is a real number describing the
layer plane angle for the element. Here, 0; is assumed to be constant for each element, thus it can

13



be calculated at any material point belonging to the element, such as the centroid, or computed as
the average of 8, of all the points within the element. Although the arrangement of elem_no
is not necessary to be consecutive, every element starting from 1 to nelem should be
present. For isotropic materials, #; will not enter the calculations.

If format_I is not equal to 1, that is, if the old format is used, the next nelem lines list the
material type and layup parameters for each element as: elem_no material_type 03 601(9), where
material_type is an integer representing the type of the material for the element elem_no, 03 is a
real number representing the layup angle in degrees for this element, and 6;(9) is an array storing
nine real numbers for the layer plane angles at the nodes of this element. For simplification, if the
ply orientation can be considered as uniform for this element, 6;(1) stores the layer plane angle
and 601(2) = 540°, and all the rest can be zeros or other real numbers because they do not enter the
calculation. If the element has fewer than nine nodes, zeros are to be input for the corresponding
missing nodes, as in the case for connectivity. Although the arrangement of elem_no is not
necessary to be consecutive, every element starting from 1 to nelem should be present.
For isotropic materials, neither 63 nor 6;(9) will enter the calculations.

If format_I = 1, that is, if the new format is used, the next nlayer lines define the layers used
in the section. They are arranged as: layer_id mate_type 03, where layer_id is an integer denoting
the identification number for each layer, mate_type is an integer denoting the material type used in
the layer, and 63 is a real number denoting the layup orientation. For example, if layer 1 is made of
material 1 and having —15° layup, we will provide the information as 1 1 —15.0. If damping_flag
is 1, a damping coefficient for each layer is also needed to input right after 3. In others words, the
input should be arranged as layer_id mate_type 03, damping_layer, with damping_layer indicating
the damping coefficient for the layer.

The next nmate blocks defines the material properties. They are arranged as:

mat_id orth

constl const? ....
where mat_id is the number of material type, orth is the flag to indicate whether the material is
isotropic (0), orthotropic (1) or general anisotropic (2). The rest are material constants.

For isotropic materials, orth is 0, if thermal_flag is 0, there are 3 constants arranged as:

E v

p
where E is the Young’s modulus, v is the Poisson’s ratio, and p is the density of the material.
Poisson’s ratio must be greater than -1.0 and less than 0.5 for linearly elastic isotropic materials,
although VABS allows users to input values that are very close to those limits.

If thermal_flag is 3 and orth is 0, and there are 4 constants arranged as:
E v

p
o

where « is the coefficient of thermal expansion (CTE).
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For orthotropic materials, orth is 1, if thermal_flag is 0, there are 10 constants arranged as:
Ey Ey Ej

Gi2 Giz3 Gas
Vi2 113 V23
p

including the Young’s moduli (E1, Fs, and E3), the shear moduli (G2, G13, and Ga3), the Poisson’s
ratios (v12, V13, and vo3), and the mass density (p). The convention of values is such that these
values will be used to form the following the Hooke’s law for composite materials:

r 1 _ Y2 _ 1137
€11 E1 (1) 0 E1 0 B | (on
2e12 0 &3 O 0 0 0 o1
2e13 . 0 0 Gim 0 0 0 J13
T k2 1 __ 23
€22 E 0 0 Es 0 Es J22
2e93 0 0 0 0 & 0 023
£33 ) —mao0 0 -0 g | Lo

If thermal_flag is 3 and orth is 1, and there are 13 constants arranged as:
FEy Ey Ej
Gi2 Gi3 G
Vi2 13 V23
P
a1] 02 (33
where a1, ags, ags are the CTEs along three directions.

The material constants are expressed in the material coordinate system; see Figure[]]. It is also
emphasized that if the users are provided material properties in a different coordinate system, or the

arrangement of stresses and strains are different from what VABS uses, a proper transformation of
the material properties is needed.

For general anisotropic materials, orth is 2, if thermal_flag is 0, there are 22 constants arranged
as:
C11 €12 €13 Ci14 C15 Ci6
C22 C23 C24 C25 C26
€33 C34 €35 C36
C44 C45 C46
C55 C56
C66
p
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These values are defined using the following Hooke’s law:

( - -

011 Cl11 C12 €13 Ci4 C15 Clg €11
012 Cl2 C2 €23 Coq4 C25 Co6| | 2€12
o3| _ |c13 co3 ¢33 310 ¢35 c36| ) 2e13
oo |cia cau 31 cas cus cu €22
023 €15 C25 €35 C45 Cs55 Cs6| | 2623
L 033 ) [C16 C26 €36 C46 Cs6 Ce6] \ €33

If thermal_flag is 3 and orth is 2, there are 28 constants arranged as:
€11 €12 €13 Ci14 C15 C16
C22 €23 C24 C25 C26
€33 €34 C35 C36
C44 C45 C46
C55 Cs6
€66
p
a11 2002 20013 o2 2023 (33
where «;;, with i« = 1,2,3 and j = 1,2, 3, are the components of the second-order CTE tensor.
CTEs corresponding to the shear strains are multiplied by two because the engineering shear strains
are twice of the corresponding tensorial shear strains. Again, the material constants are expressed
in the material coordinate system; see Figure [4] It is also emphasized that if the users are provided
material properties in a different coordinate system, or the arrangement of stresses and strains are
different from what VABS uses, a proper transformation of the material properties is needed.

If damping_flag is 1, a damping coefficient is input on the very next line following the density
input. For example, if orth=0 and thermal_flag=3 (thermoelastic analysis with isotropic materials),
the material constants are arranged as:

E v

P

v
(07

where ~ is a scalar representing the material damping property. It is noted that the damping
coefficients for each layer and for each material are additive. In other words, the total damping
coefficient used to scale the stiffness-related matrices is damping_layer + ~.

If thermal_flag is equal to 3, we also need to provide the following nnode lines for tempera-
ture for each node arranged as: “node_no T,” where node_no is an integer representing the unique
number assigned to each node and T is a real number describing the temperature of the node.
These temperature values can be calculated either from a 3D heat conduction analysis or using
VABS Conduction, which is a generalization of the VABS approach for heat conduction analy-
sis. VABS Conduction can be requested separately. Although the arrangement of node_no is
not necessary to be consecutive, every node starting from 1 to nnode should be present.

Now, we have prepared all the inputs necessary for performing the homogenization run to
compute the inertial properties and structural properties of the cross-section. That is, when argu

16



in Section [6l does not exist.

7.2 Dehomogenization Input File

If argu in Section [0] is equal to 1,2, 3, users should provide additional information in the de-
homogenization input file for VABS to perform a dehomogenization analysis. A corresponding
homogenization analysis must be run before carrying out the dehomogenization analysis.

If argu is equal to 3, VABS will perform failure analysis of the cross-section. Strength properties
for each material must be provided in the dehomogenization input file. Strength properties for each
material include a failure criterion and corresponding strength constants. Two lines will be inserted
and the inputs needed for failure analyses should be arranged as:
failure_criterion num_of_constants
consty consty consts
failure_criterion is an integer identifier for the failure criterion. num_of_constants indicates the
number of strength constants needed for the corresponding failure criterion. const; consty consts. ..
are the corresponding strength constants. It is noted that this block of data should be correspond-
ing to the material block in the homogenization input file. In other words, for each material with
mat_id, we need to provide such information.

failure_criterion can be equal to 1, 2, 3, 4, 5, and another number greater than 10. For
isotropic material, 1 is max principal stress criterion, 2 is max principal strain criterion, 3 is max
shear stress criterion (also commonly called Tresca criterion), 4 max shear strain criterion, and 5
is Mises criterion. For anisotropic materials, 1 is max stress criterion for anisotropic materials, 2 is
max strain criterion for anisotropic materials, 3 is Tsai-Hill criterion, 4 is Tsai-Wu criterion and 5
is Hashin criterion. 11 and larger indicates a user-defined failure criterion. It is assumed that the
number of strength constants will not be greater than 9 for a material. If the material is isotropic,
the failure criterion and corresponding strength constants are defined as follows:

o If failure_criterion is 1, the max principal stress criterion is used and two strength constants
are needed: one for tensile strength (X) and one for compressive strength (X’), arranged as
X, X"

o If failure_criterion is 2, the max principal strain criterion is used and two strength constants
are needed: one for tensile strength (X.) and one for compressive strength (X.), arranged as
X, X!

o If failure_criterion is 3, the max shear stress criterion (aka Tresca criterion) is used and one
shear strength constant (S) is needed.

o If failure_criterion is 4, the max shear strain criterion is used and one shear strength constant
(S¢) is needed.

e If failure_criterion is 5, the Mises criterion is used and one strength constant (X)) is needed.

If the material is not isotropic (transversely isotropic, orthotropic, or general anisotropic), the
failure criterion and corresponding strength constants are defined as follows:
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o If failure_criterion is 1, the max stress criterion is used and nine strength constants are
needed: three tensile strengths (X,Y,Z) in three directions, three compressive strengths
(X',Y’,Z") in three directions, and three shear strengths (R,T,S) in three principal planes,
arranged as X, Y, Z, X'.Y' Z' R, T, S.

o If failure_criterion is 2, the max strain criterion is used and nine strength constants are
needed: three tensile strengths (X¢, Yz, Z:) in three directions, three compressive strengths
(XL, Y., Z) in three directions, and three shear strengths (R., T¢, S¢) in three principal planes,
arranged as X., Yz, Z., X, Y., Z! R, T;, S-..

o If failure_criterion is 3, the Tsai-Hill criterion is used and six strength constants are needed:
three normal strengths in three directions and three shear strengths in three principal planes,
arranged as X, Y, Z, R, T, S.

o If failure_criterion is 4, the Tsai-Wu criterion is used and nine strength constants are needed:
three tensile strengths (X, Y, Z), three compressive strengths (X', Y”, Z’) in three directions,
and three shear strengths (R, T, S) in three principal planes, arranged as X,Y, Z, X', Y’ Z' R, T, S.

o If failure_criterion is 5, the Hashin criterion is used and six strength constants are needed:
two tensile strengths (X,Y’), two compressive strengths (X’,Y”) in two directions, and two
shear strengths (R, S) in two principal planes, arranged as X,Y, X’ Y’ R, S.

It is noted that for failure analyses, general anisotropic materials are also approximated using
orthotropic materials due to limited number of strength constants. In VABS, both the tensile
strengths and compressive strengths are expressed using positive numbers. In other words, in the
uniaxial compressive test along 1, direction, o117 = —X’ when material fails.

The above block of data for strength properties for each material only needed if argu=3. If
argu=1 or 2, the strength properties are not needed and should not be provided in the dehomog-
enization input file. Only the global beam responses as explained below should be stored in the
dehomogenization input file.

The rest of inputs in the dehomogenization input file contains the global beam responses ob-
tained from the 1D global beam analysis. To carry out a dehomogenization analysis based on the
classical model, VABS requires the following data:

u1 u2 u3

Cn Ci2 Ci3
Co1 Cap Cag
C31 O3 (s

F, My My M;

where u1, u2, and ugz are the 1D beam displacements along x1, x2, x3, respectively. The matrix Cj;,
with ¢ =1,2,3 and j = 1,2, 3, is the direction cosine matrix defined as

B, = C;1b1 + Cioby + Cijzbs with ¢ = 1,2,3

where B1, B, and Bj3 are the base vectors of the deformed beam and bi, bo, and bg are the base
vectors of the undeformed beam. Details of this definition can be found in Ref. [7]. u; and C;; are
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needed only for recovering 3D displacements. If the user is not interested in 3D displacements, these
values can be arbitrary real numbers. F} is the axial force, M; is the torque, M is the bending
moment around xo, and Ms is the bending moment around z3. The sectional stress resultants are
needed for computing 3D stresses/strains/failure indexes/strength ratios within the cross-section.
For example, if the user wants to compute these quantities under 1 unit tensile axial force along
with 1 unit bending moment around x3, the inputs can be arranged as:

0

—_ o O = O
=0 O O

0
1
0
0 0

To perform dehomogenization for multiple load cases, the user needs to insert corresponding
lines of Fy, M7, My, M3 after the end of this block. For example, to perform dehomogenization for
two more load cases with F1 =2, My =2, My = M3 =0 and Fy, =2, M = 3, M3 =4, M5 = 5, we
must provide the following inputs.

0 00
1 00
010
0 01
1 010
1 100
2 3 4 5

To carry out a dehomogenization analysis based on the Timoshenko model, VABS requires the
following data:
(75} u9 us

Cun Ci2 Ci3

Co1 O (a3

C31 Cszp Cs

F My My M;s
F, F3

fi fo fs mi ma mg

N

T 5 5 omy my  mj

n " 11 n n n

1 2 3 mp my M3
where the additional data F, and F3 are transverse shear forces along xo and x3, respectively.
f1, f2, f3 are distributed forces (including both applied forces and inertial forces) per unit span
along x1,x9,xs respectively. mj,mg, m3 are distributed moments (including both applied and
inertial moments) per unit span along 1, z9, 3 respectively. The prime denotes derivative with
respect to beam axis, that is () = 8%1, 0" = %i, and ()" = 2—2. If nload > 1, at the end of the

1 1

above data block, we need to append two lines (one line for Fy, My, M, M3 and one line for F, F3)
for each load case.
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To carry out a dehomogenization analysis based on the Vlasov model, VABS requires the
following data:
(5] u9g us

Ci1 Ci2 Cis
Co1 Coy (o
C31 C3z Cs3

= = = =/ =l =
Y11 K1 K9 R3 R7 R7 Ry

where 711 is the beam axial strain, k; is the twist , k9 and k3 are the curvatures around zo and
xg respectively. It is noted that the global behavior needed for dehomogenization analyses should
not violate the small strain assumption. Otherwise, you might get some unexpected results. For
example, if your transverse shear stiffness is 2.5 N, then inputting a shear force resultant of 1 N

1s too large as the shear strain will be about 0.4, which cannot be considered as small, the basic
assumption of the VABS theory.

Both input files, input_file_name and input_file_name.glb, should be ended with a blank line to
avoid any possible incompatibility of different computer operating systems. The input file can be
given any name as long as the total number of the characters of the name including extension is
not more than 256. For the convenience of the user to identify mistakes in the input file, all the
inputs are echoed in the file named input_file_name.ech. Error messages are also written at the end
of input_file_name.ech and on the output screen.

8 VABS Outputs

VABS homogenization analysis outputs the sectional properties stored in a text file named in-
put_file_name.K. VABS dehomogenization analysis could output 3D displacement/strain/stress, or
failure index/strength ratio distributions over the cross-section in different files as explained later.
All these output files are in pure text format and can be opened by any text editor.

8.1 Homogenization Outputs

Sectional properties obtained by a VABS homogenization analysis are stored in input_file_name.K.
Some results are listed as individual numbers, and some are listed as matrices. The definitions of
these properties are briefly summarized here for the convenience of end users. For more details,
please refer to VABS related publications.

VABS first computes the inertial properties which is represented by a 6 x 6 mass matrix with
respect to the beam coordinate system. The elements of the mass matrix are arranged as

% 0 0 0 UTN3 — T2
0 n 0 —UTp3 0 0
0 0 W [T53YP) 0 0
0 —pTM3  pTa2 22 +i33 0 0
W3 0 0 0 192 123
| — 1T A2 0 0 0 193 133
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where p is mass per unit length, x50 and xps3 are the two coordinates of the mass center (also
called the mass-weighted centroid), and ig2,i23 and i3s3 are the second mass moments of inertia.
The mass center and mass moments of inertia are measured with respect to the origin O and
coordinate axes xo and x3. VABS also outputs the mass center, the mass matrix measured with
respect to the coordinate system with the mass center as the origin and coordinates parallel to
the beam coordinate system. Furthermore, VABS also outputs the inertial properties with respect
to the principal inertial coordinate system (origin at the mass center, coordinates aligning with
the principal inertial axes) including a mass per unit length, mass moments of inertia about the
three axes, the orientation of the principal inertial axes, and mass-weighted radius of gyration (de-
fined as the square root of the mass moment of inertia about z; divided by the mass per unit length).

VABS outputs the geometric center and the area of the cross-section. Only the geometry oc-
cupied by a material enters the calculation. In other words, if the cross-section is made of a single
material, the geometric center is located at the same location as the mass center and the tension
center.

VABS outputs the 4 x4 stiffness matrix and compliance matrix for the classical beam model with
respect to the beam coordinate system. Based on the compliance matrix, VABS also outputs the
tension center (also called the modulus-weighted centroid), extension stiffness (commonly denoted
as F'A), torsional stiffness (commonly denoted as G.J), principal bending stiffnesses (commonly
denoted as Flsg, F33), and the orientation of the principal bending axes. The principal bending
stiffnesses are computed with respect to the tension center and the principal bending axes.

If damping_flag is equal to 1, VABS also outputs the 4 x 4 damping matrix for the cross-section.

If thermal_flag is equal to 3, VABS also output the thermal stress resultants and thermal strains
due to temperature changes for the classical beam model.

If curve_flag is equal to 1, VABS also output the stiffness matrix, compliance matrix, tension
center, tension center, extension stiffness, torsional stiffness, principal bending stiffnesses, and the
orientation of the principal bending axes modified by the initial curvatures/twist of the beam.

If Timoshenko_flag is equal to 1, VABS outputs the 6 x 6 stiffness matrix and compliance ma-
trix for the Timoshenko beam model with respect to the beam coordinate system. Based on the
compliance matrix, VABS also outputs the shear center (also called the twist center), principal
shear stiffnesses, and the orientation of the principal shear axes. The principal shear stiffnesses are
computed with respect to the shear center and the principal shear axes. If damping_flag is equal to
1, VABS also outputs the 6 x 6 damping matrix for the cross-section.

If Viasov_flag is equal to 1, VABS outputs the 5 x 5 stiffness matrix and compliance matrix
for the Vlasov beam model with respect to the beam coordinate system. This model is important
for capturing the “restrained warping” effect for thin-walled beams with open sections. For such
beams, it is meaningful to have a Vlasov model based on choosing the shear center as its reference.
Hence to obtain a Vlasov model, VABS finds the shear center first and then shifts the origin of the
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coordinate system to the shear center and calculate the 5x5 stiffness matrix and compliance ma-
trix. If damping_flagis equal to 1, VABS also outputs the 5 x5 damping matrix for the cross-section.

If trapeze_flag is equal to 1, VABS output four 4 x 4 coefficient matrices associated with the four
classical deformation modes (extension, twist, and two bending modes) for capturing the trapeze
effect important for torsionally soft rotating beams.

8.2 Dehomogenization Outputs

If argu is equal to 1 or 2, VABS will carry out a dehomogenization analysis to recover 3D dis-
placements/strains/stresses based on the nonlinear or linear beam theory. The recovered 3D dis-
placements are stored in input_file_name.U. The values are listed for each node identified by its
location as: “xg x3 u1 uo ug”, where xo and x3 are the coordinates of the node, u; the recovered
3D displacements at this node, expressed in the beam coordinate system.

The recovered 3D strains for each Gauss point measured in the beam coordinate system are
stored in input_file_name.E. The values are listed for each Gauss point identified by its location
as: “Tg x3 €11 2€12 2613 €22 2e23 €337, where g;; are the 3D strain components. The recovered 3D
strains measured in the material coordinate system are stored in input_file_name. EM.

The recovered 3D stresses for each Gauss point measured in the beam coordinate system are
stored in input_file_name.S. The values are listed for each Gauss point identified by its location as:
“x9 T3 011 012 013 022 023 033", where o;; are the 3D stress components. The recovered 3D stresses
measured in the material coordinate system are stored in input_file_name.SM.

The recovered 3D strains for each node measured in the beam coordinate systems are stored
in input_file_name. EN. The values are listed for each node identified by its node number and the
location as: “ node_no xo x3 €11 2612 2813 €29 2€93 €33”, where node_no denotes the node number
originally given in the homogenization input file. The node number is arranged consecutively from
1 to the total number of nodes. Multiple strain values could exist for one node if the node is
shared by multiple elements. The recovered 3D strains for each node measured in the material
coordinate system are stored in input_file_name. EMN. The corresponding recovered 3D stresses for
each node measured in the beam coordinate system and the material coordinate system are stored
in input_file_name.SN and input_file_name.SMN, respectively.

The average of 3D strains and stresses among all the Gauss points within each element are stored
in tnput_file_name. ELE, where the integer number indicating the element number, the following six
real numbers are strains measured in the beam coordinate system, the next six real numbers are the
stresses measured in the beam coordinate system, the next six real numbers are strains measured in
the material coordinate system, the last six real numbers are the stresses measured in the material
coordinate system.

If argu is equal to 3, VABS will carry out a dehomogenization analysis to compute failure indexes
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and strength ratios for each element based on the recovered results of the linear beam theory. The
results are stored in input_file_name.fi, where the integer number indicating the element number,
the following real number is the failure index for the element, and the next real number is the
strength ratio for the element. If a failure criterion with clearly identifiable failure modes is used,
such as the Hashin failure criterion, VABS will also output the corresponding failure mode for each
element at the end of the line for that element. The last line of this output file stores the minimum
strength ratio among all the elements, and the smallest element number when this happens. The
minimum strength ratio is the safety margin of the cross-section under given global responses.

9 VABS Maintenance and Tech Support

AnalySwift is committed to maintaining and providing tech support for VABS. A discussion group
is specifically set up for information exchange related with VABS. Users are highly encouraged to
sign up at https://cdmhub.org/groups/yugroup to receive most recent news of VABS, ask questions,
and share with others. A technical question should be posted in the discussion group on
cdmHUB (https://cdmhub.org/forum) before it will be answered. A page of VABS FAQ
will be constantly updated in the group. Before you ask questions, please do the following;:

1. Read the VABS manual carefully, if you have not done so;
2. Check the error message at the end of input_file_name.ech;

3. Make sure that you have provided the right input data through input_file_name.ech, which is
VABS’ understanding of your input file;

4. Check the VABS FAQ page on the cdmHUB group;

5. Post your question in the forum on cdmHUB. If your question contains sensitive information,
you can ask questions through email.

10 Epilogue

After a period of continuous development ever since year 1989, VABS has reached a level of matu-
rity, and its accuracy has been extensively verified by its developers and users. The performance
and robustness of code have been continuously improved based on feedback from its users through-
out the world. Although VABS has been designed in such a way that end users do not have to
fully understand its theoretical foundation (the details of which are spelled out in VABS related
publications), further questions are inevitable because VABS represents a new paradigm to ana-
lyze composite beams which is drastically different from other methods. Nevertheless, it should be
clear that VABS is the best available code for engineers to design and analyze composite slender
structures using beam models.
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